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ARTICLE INFO ABSTRACT

Keywords: When diagonal values are missing or excluded, MINRES is a natural continuous model for the
Core/periphery core/periphery structure of a symmetric social network matrix. Symmetric models, however, are not
SVD so useful when dealing with asymmetric data. Singular value decomposition (SVD) is a natural choice to
?g:?fguares model asymmetry, but this method also requires the presence of diagonal values. In this paper we offer
Trade an alternative, more general, approach to continuous core/periphery structures, the minimum resid-
Citation ual singular value decomposition (MINRES/SVD), where each node in the network receives two indices,

an “in-coreness” and an “out-coreness.” The algorithm for computing these coreness vectors is a least
squares computation similar to, but distinct from the SVD, again because of the missing diagonal values.
And in contrast to the standard, symmetric MINRES algorithm, we can more accurately model asymmet-
ric matrices. This allows us to distinguish, for example, countries in the world economy that are more
in the exporting core than they are in the importing core. We propose two nested PRE (proportional
reduction of error) measures of fit: (1) the PRE from the MINRES vector with respect to the data and
(2) the PRE of the product of the two MINRES/SVD vectors. Applying the resulting method to citations
between journals and to international trade in clothing, we illustrate insights gained from being able to
model asymmetrical flow patterns. Finally, two permutation tests are introduced to test independently
for the MINRES and MINRES/SVD results.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction work to improve upon the existing computational methods (Boyd
et al., 2006; Garcia Muniz and Ramos Carvajal, 2006).

Core/periphery concepts and network structures are of great In some substantive applications, “core” and “periphery” are

interest across a range of academic disciplines and research areas,
from interpersonal networks to global systems, from the local
transfer of pathogens to the international trade of commodities.
Some examples include epidemiology (Jolly et al., 2001; Christley
et al,, 2005), small groups (Beck et al., 2003; Cummings and Cross,
2003), interpersonal networks (Bourgeois and Friedkin, 2001),
linguistics (Dodsworth, 2005), groups in isolated or extreme envi-
ronments (Johnson et al., 2003), networks of creative artists (Uzzi
and Spiro, 2005), PhD exchange networks (Burris, 2004; Fowler
et al,, 2007), knowledge communities of firms (Giuliani and Bell,
2005), biology (Bosch et al., 2009; Luo et al., 2009), and regional
studies and globalization (Alderson and Beckfield, 2004; Gray,
2005; Grbic, 2007; Lee et al., 2007; Mahutga, 2006; Schott, 1986).
This plethora of substantive studies has prompted further attempts
at conceptual refinement (Everett and Borgatti, 1999, 2005) and
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seen as discrete subgroups. This discrete model partitions actors
into core and periphery subgroups such that core actors are max-
imally connected to each other, peripheral actors are minimally
connected to each other, and connections between subgroups
are unconstrained (Borgatti and Everett, 1999; Boyd et al., 2006).
Table 1 illustrates such a discrete core/periphery structure for an
imaginary group of 10 actors. The five members of the core appear
first and are connected by 1s, which in practice means a “strong”
connection, while the five members of the periphery are connected
by 0s, meaning little or no connections. Each connection between
the core and the periphery, however, is indicated by an asterisk
(*), meaning that this value is indeterminate and can take on any
value. In addition, each diagonal entry has adash (-), indicating that
this tie is undefined. An actual network with a proposed discrete
core can be evaluated by correlating its connections against a size-
adjusted Table 1, omitting both the asterisks and dashes (Borgatti
and Everett, 1999).

This concept can be expanded to several groups in between the
core and the periphery, such as “semi-core” and a “semi-periphery.”
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Table 1
A discrete core/periphery matrix.
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The natural limit, as presented in this paper, is to consider the core
and periphery as opposite ends of a continuum. In this view, actors
with high values of coreness tend to be highly connected with each
other, while those with low values, i.e., peripheral actors, tend not
to be connected with each other.

Whether a researcher analyzes empirical data using a discrete
or continuous core/periphery approach, a somewhat standard data
analysis issue in the analysis of square matrices must first be
addressed: how to treat the diagonal entries. The usual practice in
social networks is to treat the diagonals as undefined (Wasserman
and Faust, 1994). One notable exception is given by Batagelj et al.
(2005), who analyze the Baker (1992) citation data among social
work journals, where an author citing an article in the same journal
is entered in the diagonal.

Diagonal data may possess at least five properties: it can be (1)
missing, (2) incompatible, (3) irrelevant, (4) biased, or (5) mean-
ingful. The first case, missing diagonals, is the most common one
in social networks, and here one has no choice but to treat them as
undefined. The second case, where diagonal entries are present but
incompatible with the off-diagonals, is also common. For example,
in a study of e-mail communications between individuals, Boyd et
al. (2006: 176) decided to treat diagonal values as missing, since
e-mails to oneself are clearly a different type of behavior (e.g., e-
mail testing or the use of the “ReplyAll” option) than e-mails to
others (communication about homework). Similarly, although it
is possible to elicit a response to a reflexive network question,
such as “liking yourself,” the meaning of this response is clearly
different from “liking” another person. The third case, irrelevancy,
depends on the analysis. E.g., for estimating a distance function on
a set of objects, the distance between an object and itself is zero
by definition, independent of the data. The fourth case, bias, may
be handled either by treating diagonals as missing data, analogous
to eliminating outliers, or by constructing a more complex model
that estimates and adjusts for this bias. An example of this kind of
data is citation networks, where there is an obvious bias toward
citing oneself. The fifth and final case, with meaningful diagonals,
is best illustrated by symmetric matrices derived from two-mode
data. For example, if B is a two-mode data matrix, then the “sums
of squares and cross-products” matrix A=BBT has diagonals (the
“squares”) that are just as meaningful as are the off-diagonal entries
(the “cross-products”). However, these matrices are positive semi-
definite, as opposed to the general non-negative square matrices
considered in this paper. While not denying the possibility of valid
theory and empirical data for diagonal values, for the remainder of
this paper we focus on the more common cases, where diagonal
values are either absent or excluded.

The most widely used measures of continuous core/periphery
structures in networks are due to Borgatti and Everett (1999),
implemented as part of the UCINET package (Borgatti et al., 2002,
Version 6.153). One of the methods they use to calculate core-
ness for each actor is MINRES, or minimum residual, a procedure
developed by Harman (1967) and Comrey (1962) for approximat-

ing correlation matrices while ignoring the “communalities” on the
diagonal. This model approximates a square matrix by finding a
vector such that the vector times its transpose minimizes the sums
of squares of the off-diagonal elements of the residual matrix (see
Section 2.1).

In the context of social networks, the MINRES procedure, like
eigenvector centrality (Bonacich, 1972, 2007), produces a vector
w that takes account of indirect effects. The difference is that
eigenvector centrality requires zeros on the diagonals, and then
computes the principal eigenvector. By comparison, MINRES finds
a vector w that is computed without using the diagonals, optimiz-
ing the fit to the off-diagonal entries Comrey (1962: 86), whether
or not the data is symmetric.

Most empirical networks are not symmetric: the strength of a
tie from i to j may well differ from the tie from j back to i. Yet
the MINRES vector produces a symmetric structure matrix, mak-
ing it impossible to capture empirical asymmetries. One choice for
capturing empirical asymmetries, even for square matrices (one-
mode data) as an important special case, is to employ the singular
value decomposition (SVD), but this requires diagonal values (see
Section 2.3). This paper simultaneously addresses the problems of
missing diagonals and asymmetry by approximating data matrices
with an expression analogous to, but distinct from, the SVD of a
matrix. This formulation involves two vectors, representing outgo-
ing and incoming tendencies for each node, but like MINRES, does
not use the diagonal. For friendship networks, these vectors might
be interpreted as “expansiveness” and “popularity,” respectively;
for international trade, the interpretation might be exporting and
importing tendencies, respectively.

In the following section, we will first briefly review the MINRES
continuous core/periphery model. Next, using mock and empirical
datasets of differing size, we will compare results obtained from the
MINRES algorithm to those from alternative models based upon
variations of SVD. After considering the results of these compar-
isons, and addressing computational issues raised by large sparse
matrices, we conclude with an illustrative substantive application
of our proposed method to international commodity trade in cloth-
ing (Mahutga, 2008) for the year 2000.

2. The core/periphery continuum and MINRES/SVD
2.1. The base model: MINRES

The MINRES method (Harman, 1967; Comrey, 1962) seeks a
(column) vector w such that the square n by n data matrix A is
approximated by the structure matrix ww?, in the sense that it min-
imizes the off-diagonal sums of squared differences, or residuals,
SS(A—wwT) = ZiZj LAy — wiwj)z. In practice, UCINET normal-

izes the coreness measures, reporting w/ . /ZW,'Z instead of w
itself. Each of these n non-negative real numbers w; measure the
coreness for actor i. MINRES is most suited to symmetric matrices
because the structure matrix ww’ is itself symmetric. Note that
if it were not for the exclusion of the diagonal elements of A, the
optimal one-dimensional approximation would be given by vAvT,
where A is the first eigenvalue of the symmetrized matrix (A +AT)/2
and v is its eigenvector.

A natural measure of fit in this context is the proportional
reduction of error, PRE(ww”|A) = 1 — SS(A — ww!)/SS(A — A), where
SS(A—A) is the sum of squared deviations of the off-diagonal
elements of A from the global mean A. Obviously, minimizing
SS(A —wwT) is equivalent to maximizing the PRE. Note that this
PRE is the same as the proportional reduction of variance.

If the vector w is chosen badly, the PRE can be zero or even neg-
ative. For example, let A be an extreme form of a core/periphery
structure, viz., Table 1 but with all the *s replaced by 0s. Now
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Table 2
A non-symmetric, continuous core/periphery matrix.
A B C D B F G H

A - 396 296 234 191 161 138 120
B 281 - 144 114 93 78 67 59
C 161 110 - 65 53 45 39 34
D 102 70 52 - 34 28 24 21
E 69 48 36 28 - 19 17 14
F 50 34 26 20 16 - 12 10
G 37 25 19 15 12 10 - 8
H 28 20 15 12 9 8 7 -
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Fig. 1. An ideal, continuous, non-symmetric core/periphery structure.

the matrix has 700s and 201s, so the mean is 2/9, resulting
inSS(A — A) = 20(7/9)* + 70(2/9)* = 1260/81 = 15.(5), where the
last pair of parentheses represents a repeated sequence of 5s. The
best choice for w would be five 1s followed by five 0s, giving a
perfect fit with a PRE of 1. On the other hand, the worst choice for
w, while holding its inner product wTw constant at 5, would be to
switch the Os and 1s from the previous w, giving a SS(A — ww’) of
40, and a PRE of 1-40/15-(5)=—11/7. For any A, however, the PRE
for the optimal w always lies between 0 and 1, since w can always
be chosen to be the constant vector, the constant being the square
root of the mean, so that the entries in the structure matrix ww’
will equal the global mean.

Later we will introduce PREs with respect to the structure matrix
generated by the MINRES/SVD model. If X, Y, and Z are three struc-
ture matrices with increasing sums of squared deviations from A,
denoted by x, y, and z, respectively, then PRE(X|Y), read as “the PRE
of X given Y,” is defined as 1 —x/y. The natural question to ask is
how can the largest PRE, X given Z, be expressed in terms of the
other two. The correct expression is

PRE(X|Z) = PRE(X|Y) + PRE(Y|Z) — PRE(X|Y)PRE(Y|2), 1)

which can be easily verified. Obviously, the rule of combining PREs
could not be simple addition, since this would lead to PREs greater
than one.

A data matrix A satisfies the continuous core/periphery model if
its measure of fit, PRE(wwT|A), is both “large,” which depending on
the data might mean “larger than 0.5,” and “significant,” as mea-
sured by the permutation tests of Section 3.3. The improved model
introduced in this paper, MINRES/SVD, is conditional on the older
MINRES being true enough to say that we are in fact looking at a
core/periphery model.

2.2. The problems of symmetry and measurement

When empirical data is not symmetric, forcing symmetry on
the predicted structure matrix has significant consequences for the
theoretical and substantive interpretation of results based upon a
symmetric core/periphery modeling approach. To illustrate these
consequences, ideally, one would like to model data like that
depicted in Fig. 1 and presented in tabular form in Table 2. One can
see that coreness drops sharply as one goes from actor A to actor E,
following a power law often found in income distributions for either
individuals or nations. However, there are also notable asymme-
tries, most obviously, the larger flow from A to B than from B to A.

Fig. 1 has several interesting limiting cases obtained by emphasiz-
ing symmetry, asymmetry, or the formation of two discrete groups,
the latter case being inconsistent with a core/periphery structure.
An uninteresting special case would arise if the response were to be
independent of either the row or the column variables. For example,
it would be possible for each row to be constant.

Any algorithm that forces symmetry in the predicted structure
matrix, such as MINRES and other algorithms available in UCINET, is
restricted to modeling core/periphery structures corresponding to
the symmetric limit of the discrete or continuous structure found in
Tables 1 and 2, respectively. Observed data containing significant
asymmetry will result in a poor fit to these same core/periphery
algorithms.

It certainly would be a mistake to symmetrize all asymmet-
ric observed data before conducting any analysis because the
researcher must make an arbitrary decision regarding the method
to do this (e.g., take the maximum value of A; and Aj;, or the mini-
mum, the arithmetic mean, the geometric mean, etc.). Furthermore,
forcing symmetry may completely remove or fundamentally alter
theoretically or substantively important patterns that existed in the
original directed data. What is needed, then, is a method that is able
to detect continuous core/periphery structures, where they exist,
in both symmetric data and asymmetric data.

2.3. SVD solves the one problem, forced symmetry, but now fails
to exclude the diagonal

The singular value decomposition is defined for rectangular
matrices, for which symmetry is not an issue, but it can also handle
square matrices, whether symmetric or asymmetric, as a special
case. However, it does require the presence of the diagonal ele-
ments of the matrix. More formally, the singular value decomposition
(SVD) (Schmidt, 1907; Stewart, 1993; Ben-Israel and Greville, 2003)
of a real m by n matrix A of rank r is a triple of matrices (U, D, V)
such that

A=UDVT, (2)

where U is an m by r real matrix with orthonormal columns, Disanr
by r diagonal matrix, and V'is an n by r real matrix with orthonormal
columns. Recall that the rank of a matrix is its maximum number of
linearly independent rows (or, equivalently, columns). Also, a set of
vectors is orthonormal if each vector is normal (its sum of squares
equals 1) and each pair of distinct vectors is orthogonal (the sum of
their cross-products equals 0). In terms of matrix equations, U and
V are orthonormal if and only if:

UTU=1I, and VTV =1, (3)

where I, is the identity matrix (r by r diagonal matrix with 1 s on the
diagonal). The columns of U and V are called singular vectors. The
diagonal elements d; of D are called singular values and are ordered
as follows: dq > --- > d; > 0. Finally, note that the Us and the Vs, can
each be determined from the other, since

U=AVD! and V=AUD (4)

Soc. Netw. (2009), doi:10.1016/j.socnet.2009.09.003
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The critical property possessed by the SVD of A is that, for any
k <r, it gives the best least squares rank-k approximation of A,
denoted by Ay, by the formula:

T
Ay = Uy Doy Vi (5)

where Uy and V() are the first k columns of U and V, respectively,
and D is the diagonal matrix formed from the first k singular val-
ues (Schmidt, 1907). This approximation for A is unique if and only
ifthe kth and (k + 1)st singular values of A are not equal. The squared
approximation error is given by

m n k 2 r
ZZ <Aij - Zuihdhvjh> = Z diz. (6)
i h

i=k+1

Here we are employing the usual convention that the lower
summation indices start from 1, unless otherwise noted. The
number of real numbers involved in a rank-k approximation is
k(m+n+1), counting both sets of singular vectors plus the singu-
lar values. However, subtracting the orthonormal constraints in Eq.
(3), we are left with just k(m +n — k) free variables to be estimated
(degrees of freedom). In the special case of a square n by n matrix
of full rank, this formula gives the degrees of freedom as n2, which
agrees with the n? free choices for entries in the matrix.

In many applications of SVD, the matrix A is preprocessed before
doing the decomposition. In correspondence analysis, for exam-
ple, each element of A is divided by the square root of the product
of its row and column sum (Greenacre, 1984). This is especially
useful in two-mode data or when the rows or columns are not
measured in the same units. For example, in a person by attribute
matrix, the attributes might include incommensurable variables
such as height, weight, and religion. However, in the one-mode data
sets discussed here, citations between journals and trade between
countries of specific commodities, both the rows and columns are
from the same relatively homogeneous set of variables (i.e., they are
all journals or they are all countries) and the entries are in uniform
units, the number of citations and the U.S. dollar value of trade,
respectively.

This idea is illustrated in Fig. 1, which is a bar graph of a matrix
of a fictional trade network with eight countries, lettered A-H.
The height of the (i, j)th bar indicates the amount that country i
exports to country j and is generated by the udv” formula. The sin-
gular vectors are u={0.85, 0.42, 0.24, 0.15, 0.10, 0.07, 0.05, 0.04}
and v=1{0.68, 0.46, 0.35, 0.27, 0.22, 0.19, 0.16, 0.14}. The singu-
lar value d was chosen to be 1000 just so that the trade values
would be in the hundreds. The singular value is a scaling factor
that gives the optimal least squares fit to the data and can adjust
for a change in units, say from dollars to euros. For example, the
value of the exports from country A to country B in the model is
uqdv, =0.85 x 1000 x 0.46 =400. The ability of the expression udv’
to capture asymmetry is illustrated here by the reciprocal exports
from country B to country A, u,dvy =0.42 x 1000 x 0.68 =286.

Since udv” generates the matrix of Fig. 1 exactly, the value of
PRE(udv™|A) is 1.0, indicating a completely one-dimensional struc-
ture, while the correlation between u and v is 0.984 indicating high,
but not complete, symmetry. By way of comparison, the ordinary
MINRES has PRE(wwT|A) of 0.849, while PRE(udv’ jwwT), because
of Eq. (1), also equals 1.0. Of course, if we had chosen u and v to be
equal, then the data would be symmetric, and PRE(wwT|A) would
be 1.0, while PRE(udv” jwwT) would be 0.

For the reasons specified in Section 1, the diagonal entries, which
are down the center of Fig. 1, are missing values. Unfortunately,
these missing values mean that SVD cannot be directly applied to
compute the first singular value d or the vectors u or v from the
off-diagonal values.

2.4. MINRES/SVD solves both problems

To simultaneously address both the asymmetry and missing
diagonal problems, we developed a technique called minimum
residual singular value decomposition (MINRES/SVD), which has
nice properties of both methods. In fact, our MINRES/SVD is the
minimal generalization that captures the virtues of both MINRES
and SVD. The purpose of MINRES/SVD is to find the best approxi-
mation to the n by n matrix A, but where the diagonal elements are
excluded (as in MINRES), and where two vectors are allowed (as in
an SVD of rank one). That is, we want to minimize the sum of the
non-diagonal squared residuals,

F=" Ay —widy). (7)
ij#i

The motivation for MINRES/SVD is that it takes desirable fea-
tures from both SVD (separate u and v vectors to handle asymmetry)
and from MINRES (not letting the undefined diagonal elements
affect the results). By analogy to the symmetric case, where the w-
vector values were interpreted as “coreness,” in the remainder of
this paper the u- and v-vectors will be referred to as “out-coreness”
and “in-coreness,” respectively.

2.5. Algorithms for MINRES and MINRES/SVD

One approach to finding the optimal MINRES/SVD solution is
to minimize the function f in Eq. (7) with one of the many high
level programming languages, such as MATLAB or Mathematica
(Wolfram, 2003). We did just that using Mathematica’s NMinimize
procedure, which successfully finds the global optimum in all cases
we considered. However, this procedure is relatively slow, making
it unsuited for the permutation tests considered later in this paper.
A better approach, which follows the usual methods in calculating
eigenvalues, is to differentiate Eq. (7), set the result equal to zero,
and solve with another built in Mathematica function, FindRoot.
The disadvantage of FindRoot is that in certain extreme cases it can
get stuck in local optima, giving negative PREs. For example, if A
is a 10 by 10 matrix consisting of four 5 by 5 blocks: the two off-
diagonal blocks are all zeros, the upper left block is all 1s (except
for 0s on the diagonal), while the lower right block is filled with
the constant 0.603 (except for Os on the diagonal), then FindRoot
gives a PRE of —0.261695, while NMinimze finds the right answer,
a PRE of 0.541236. However, if the constant in the lower right block
is lowered by 0.001, both procedures give the same answer. Note
that this wild behavior occurs in a case totally unsuited to the
core/periphery model: two non-communicating cliques. We have
not yet encountered this problem on empirical data or with any of
its permutations. Furthermore, since these types of structures can
be detected via appropriate pre-analysis data screening, we shall
proceed with FindRoot.

Before we do this, however, note that we can eliminate both
the singular value d and the normality constraints on the singular
vectors, u and v. The singular value d is a scale factor whose role
is to enlarge or shrink the numbers in the matrix udv’ so that they
best approximate the data matrix A. Since u and v are normalized,
the numbers u; and v; are small (less than one) and their products
are even smaller. So if the average number in A is large, say 1000,
then d must be even larger to compensate. For example, if A is a
constant 100 by 100 matrix such that A;; = 1000, then by symmetry
u;=v;=0.1 (since 0.1 squared is 0.01, which sums to 1). In order to
equal 1000, then d must equal 10,000. This gives a perfect fit: i.e.,
A=udvT.

If we eliminate the normality constraint, then the singular value
d can be eliminated by absorbing it into the unconstrained vectors
u and v. In the example above we could have u; =1 and v; =1000. Of
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course, the solution is not unique. Nevertheless, without the d our
approximating model is now simpler: A~ uv’. Now we replace Eq.
(7) with the new minimization problem of the following equation:

F=7) Ay —um). ®)
ij#i

Next, we want to get back to the original u, d, and v for ease

of interpretation, uniqueness, and comparability with SVD. Here’s

how: let d=|u|| ||v||, where |ju|| = Zl"ulz is the norm of u, and

then normalize (divide by their norms) u and v. To minimize f in
Eq. (8), differentiate with respect to u; and equate to zero, as in the
following equation:

% = “2up? = 244 =0. 9)
j#i j#i
Eq. (9) can be simplified to Eq. (10). Note that the sums are now
unrestricted on the left-hand side because the diagonal elements,
Ajj, are assumed to be zero, and on the right-hand side because it is
subtracted out by the term viz.

ZAUU] =U; ZUJZ — Ul-2
J J

This can best be expressed as the vector Eq. (11), which also

includes, in the right-hand equation, the partial derivatives with

respect to v.

(10)

Av=u(v—1*) and uTA =o' u—u?). (11)

This has the conventions that a vector squared (or two column
vectors that are adjacent) means to square (or multiply) element-
wise, and that a scalar, such as v"v or u”u, plus a vector adds the
scalar to each element in the vector. Mathematica insists on a period
to indicate inner product (matrix-vector or vector-vector), so that
the distinction between a vector and its transpose becomes redun-
dant. Finally, the complete Mathematica code for solving Eq. (11),
and hence finding MINRES/SVD, is the single line in Eq. (12), where
ug and vg are initial guesses for u and v.

FindRoot[{A.v = u(v.v — 1*),

uwA=v(uwu—u?), ({u,ue}, {v,voh}] (12)

See Appendix A for the computation of good initial guesses for
ug and vg.

Table 3
Raw Baker (1992) data, ordered by w.

To most consistently compare the computed MINRES/SVD
results with MINRES, we also used Mathematica to compute MIN-
RES results. MINRES minimizes the residual Eq. (8), except that u;v;
is replaced by w;w;. Differentiating as before, we get Eq. (13), which
is the analog of Eq. (11).

WTA + Aw = wwTw — w?). (13)

Eq. (13)is solved by the even simpler Mathematica line found in
the following equation:

FindRoot[A.w + w.A = 2w(w.w — w?), {w, wp)]. (14)
3. Application to journal citations and international trade
in clothing for 2000

3.1. Baker’s 1992 citations among social work journals

In order to illustrate MINRES/SVD, we apply it to Baker’s (1992)
data, the number of citations from one journal to another among 20
social work journals over a 1-year period between 1985 and 1986.
These same data, after first imposing symmetry by choosing the
larger of A;; and Aj;, were used by Borgatti and Everett (1999:386
Table 8) to demonstrate UCINET’s continuous core/periphery algo-
rithms. The raw Baker (1992) data is shown in Table 3, ordered
by our MINRES vector w so that the higher core journals come first.
The abbreviations in Table 3 are as follows: AMH (Administration in
Mental Health), ASW (Administration in Social [henceforth, S]Work
[W1]), BJSW (British ] of SW), CAN (Child[C] Abuse and Neglect), CCQ
(C Care Quarterly), CW (C Welfare), CYSR (Children and Youth Ser-
vices Rev), CSW] (Clinical S W]), FR (Family Relations), [JSW (Indian
] S W), JGSW (J Gerontological S W), JSP (] S Policy), JESW (J Edu-
cation for S W), PW (Public Welfare), SCW (S Casework), SSR (S
Service Rev), SW (S W), SWG (S W with Groups), SWHC (S W in
Health Care), SWRA (S W Research and Abstracts),

Note the large asymmetries in the Baker (1992)data, such as that
found between the first two journals SW and SCW: 124 versus 58.
The diagonal entries show self-reference, although as previously
discussed they will be ignored in the analysis that follows.

Both the Baker (1992) journal citation matrix and the world
clothing (Mahutga, 2008) trade matrix for 2000, which we will also
examine, have a distribution of cell values that is highly skewed
to the right. This positive skew is very common with large data
sets of non-negative numbers, such as the distribution of income or
city size. Skewed data present a problem with any type of analysis
that minimizes squared residuals (e.g., regression, SVD, or MINRES),

SW SCW SSR  JSWE CW SWRA ASW SWG SWHC CYSR CSW] FR CAN PW JGSW BJSW CCQ IJSW AMH ]JSP
SW 356 58 53 33 52 8 15 15 43 0 0 9 0 19 0 0 0 0 0 0
SCW 124 149 36 21 17 18 8 8 6 0 8 6 6 0 6 0 0 0 0 0
SSR 106 30 105 9 17 25 7 0 0 0 0 0 0 0 0 0 0 0 0 0
JSWE 58 18 16 104 0 16 9 0 7 0 0 0 0 0 0 0 0 0 0 0
cw 58 32 10 11 187 0 0 0 0 6 0 0 7 7 0 0 0 0 0 0
SWRA 44 8 39 24 8 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ASW 73 0 21 18 0 7 70 0 0 0 0 0 0o 13 0 0 0 0 0 0
SWG 40 9 7 © 0 0 0 41 9 0 0 0 0 0 0 2 0 0 0 0
SWHC 26 20 0 0 0 0 0 0 86 0 0 0 0 0 0 0 0 0 0 0
CYSR 28 8 14 0 70 5 0 0 0 26 0 4 12 6 0 0 5) 0 0 0
CSW]J 45 47 20 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0
FR 9 18 0 0 0 0 0 0 0 0 0 205 0 0 0 0 0 0 0 0
CAN 8 6 0 0 9 0 0 0 0 0 0 0 109 0 0 0 0 0 0 0
PW 0 0 0 0 4 0 0 0 0 0 0 0 7 9 0 0 0 0 0 0
JGSW 18 16 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0
BJSW 19 0 0 13 0 0 0 0 0 0 0 0 0 0 0 95 0 0 0 0
ccQ 0 3 0 0 12 0 0 0 0 0 0 0 0 0 0 0 92 0 0 0
JSW 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0
AMH 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0
JSP 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35
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Table 4
Results from MINRES, MINRES/SVD, and the Independence Model for the logged
Baker Data.

Journal w u v Row sum Col sum
SW 0.571 0.509 0.634 0.482 0.648
SCW 0.420 0.389 0.411 0.473 0.447
SSR 0.349 0.319 0.372 0.278 0.360
JSWE 0.289 0.269 0.289 0.254 0.274
cw 0.272 0.265 0.266 0.276 0.277
SWRA 0.245 0.262 0.215 0.225 0.184
ASW 0.196 0.227 0.151 0.224 0.114
SWG 0.159 0.207 0.095 0.206 0.061
SWHC 0.152 0.138 0.153 0.094 0.123
CYSR 0.139 0.250 0.022 0.331 0.024
CSWj 0.123 0.208 0.036 0.160 0.027
FR 0.104 0.108 0.095 0.078 0.071
CAN 0.097 0.114 0.082 0.096 0.106
PW 0.078 0.024 0.127 0.055 0.118
JGSW 0.078 0.122 0.031 0.086 0.024
BJSW 0.056 0.107 0.009 0.084 0.013
ccQ 0.032 0.050 0.018 0.059 0.022
JSW 0.017 0.035 0.000 0.021 0.000
AMH 0.017 0.035 0.000 0.021 0.000
JSP 0.015 0.031 0.000 0.031 0.000
PRE 0.586 0.192 0.029

since the outliers on the right-hand tail have undue influence, or
leverage, on the result because squaring magnifies the effect of large
deviations.

Skewness in data matrices can be reduced by a suitable trans-
formation. For our purposes the most useful transformation is the
logqg(x+ 1) transform, a special case of the Box—Cox family of trans-
formations (Box and Cox, 1964). The “1” in the transformation is not
arbitrary, but is required to produce a value of 0 at 0 with a slope
of 1. For simplicity this transform or its application to data will be
referred to as “the log transform” or “the logged data.” The log trans-
form also has three practical advantages: the base 10 interpretation
in terms of approximate orders of magnitude, the implied model of
multiplicative stochastic processes, and the reduction of skewness.
When the log transform is applied to the Baker (1992), 2000 cloth-
ing data (Mahutga, 2008), the skewness is reduced from 4.647 and
38.62 to 1.664 and 1.044, respectively.

The results of MINRES and MINRES/SVD on the logged Baker
(1992) data are show in Table 4.

Aperusal of the raw data matrix in Table 3 explains why the jour-
nal SW (Social Work) receives by far the highest coreness scores;
this journal cites and is cited by the most other journals with the
highest frequencies. The column of Table 4 labeled w comes from
MINRES applied to the logged data. PRE(ww? |A) for this w is 0.586.1

The columns of Table 4 labeled u and v, come from MINRES/SVD
applied to the logged data, resulting in PRE(udv” jwwT) of 0.192.
Recall that this PRE is over and above the error accounted for by
MINRES alone; the PRE of udv’ given the mean is PRE(ww'|A),
which equals 0.665, which can be computed directly or from Eq.
(1). The last two columns are merely the normalized row and col-
umn sums, also from the logged data. If we fit the data using only
the row and column sums, an optimized choice of d results in a
disappointing additional PRE, compared to MINRES, of only 0.029.
However, the row and column sums can be the initial estimates for
u and v, respectively, in the computation of MINRES/SVD. What is
gained by computing u and v is a statistically significant increase
in the PRE and in- and out-coreness scores that optimize both the
direct and the indirect influences in the citation matrix. Just as col-
lege football ratings take into account not only wins and losses of

1 Because of some inconsistent results we obtained from UCINET’s MINRES cal-
culations on asymmetric data (for which it was not designed), the w in Table 4 was
computed as described in Section 2.5.

u

SW

0.1 0.2 0.3 0.4 0.5 0.6

Fig. 2. The core/periphery structure for the logged Baker, 1992 Citations between
social work journals.

a team, but also the wins and losses of its opponents, so too do the
singular values. For example, let us examine why CW (Child Wel-
fare) and SWRA (Social Work Research and Abstracts) can end up
with almost the same u-scores, 0.265 and 0.262, while their nor-
malized row sums are quite different, 0.276 and 0.225, respectively.
The difference is accounted for by SWRA giving all of its citations
to journals that are in the top four in u-scores, while CW cites these
same journals but in addition uses 20 of its 131 citations on journals
ranked in the bottom ten in u-scores, thus dissipating their contri-
bution to its out-coreness. This can be justified more formally by
noting that, as discussed in Appendix A, the row sums of the matrix
AATA are an even better approximation to the u vector than are the
row sums for the raw matrix A. The row sums in the matrix AATA
for CW and SWRA are 679 and 698, which are more nearly equal,
helping to explain why their u-scores are so close.

Fig. 2 plots vagainst u, illustrating the continuous core/periphery
structure for the analysis of the log transformed Baker (1992) social
work journal citation data (from Table 3). The peripheral journals
cluster around the origin, while the core journals are scattered to
the upper right, leading to the top journal, SW. Journals that cite
more than they are cited, such as CYSR (Children and Youth Services
Review), appear above the imaginary 45 degree line, while those
that are cited more than they cited, such as PW (Public Welfare),
are below this line.

So how does MINRES/SVD perform on much larger real world
datasets? In the following section, we analyze one of the more com-
monly used data types in the context of core/periphery structures:
international trade data.

3.2. International clothing trade in 2000

In this section, we analyze clothing trade in the year 2000.
Indeed, network studies of international trade almost uniformly
attempt to assess the extent to which trade networks exhibit a
core/periphery structure. In turn, the main reason for the close
association between studies of international trade and network
analysis in the field of sociology is the world-system perspective,
which sought to explain cross-national inequalities and “under-
development” by arguing that dominant “core” countries benefit
from more powerful positions vis-a-vis “semi-peripheral” and
“peripheral” countries (Wallerstein, 1974). Thus, a major task in
the empirical world-systems literature has been assessing the
extent to which the network of the world economy exhibited a
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core/periphery interaction pattern; identifying core, peripheral and
semi-peripheral countries; and establishing causal links between
a country’s structural location and level of development (e.g.,
Mahutga, 2006; Nemeth and Smith, 1985; Smith and White, 1992;
Snyder and Kick, 1979; Van Rossem, 1996).

As these studies proliferated, so too did the methodologi-
cal approaches to the measurement of core/periphery structures.
Despite this proliferation and advancement, many previous
approaches implicitly, if not explicitly, treat trade relationships as
symmetric or discrete. For example, Mahutga (2006) and Smith and
White (1992) allow asymmetry in the reduced data matrices, but
do not have separate measures for export- and import-coreness
because they reduce the multiple trade relationships to a regu-
lar equivalence matrix. Snyder and Kick (1979), Kick and Davis
(2001), Kick et al. (2000), and Nemeth and Smith (1985) use CON-
COR (Breigeretal., 1975), which gives discrete partitions based only
on the correlations among the row (export) profiles, while ignor-
ing the column (import) profiles. Kim and Shin (2002) symmetrize
their data from the outset by taking the largest of A; and Aj;, and
therefore analyze a matrix in which an important aspect of the data
is explicitly removed prior to their analysis.

We contend that the asymmetry inherent in trade relationships,
like many other kinds of relationships, is a valuable aspect of the
data, and that our theoretical understanding of the role that vari-
ous countries play in the world economy (as defined by country to
country trade) is limited by forced symmetry in previous models.
For example, a growing body of literature argues that the organi-
zation of some manufacturing industries changed over the course
of economic globalization. One of the more common industries
experiencing this reorganization is the garment industry, in which
lead firms located in core countries design, market and retail fin-
ished garments but offshore the manufacturing activities to firms
in poorer countries (e.g., Gereffi, 1994, 1999).

This shift in the organization of the global garment industry
should manifest itself as asymmetry in patterns of international
garment trade. For example, we expect to observe a tendency
for historically “core” countries to have higher import-coreness
than export-coreness scores in the garment industry, that a high
ranking in in-coreness is a better predictor of a high ranking
in symmetric coreness than is a high ranking in out-coreness,
and that high ranking countries have less than expected bilat-
eral trade in garments. In short, the sections that follow show
how our proposed method not only verifies the findings of pre-
vious studies by fitting a core/periphery structure to international
trade data, but also adds to them by differentiating between in-
coreness (import-coreness) and out-coreness (export-coreness) in
a manner consistent with the organization of the global garment
industry.

The data for this analysis come from the United Nations’
COMMTRADE database, which collects data on international trade
classified by specific types of commodities. We analyze one type
of bilateral trade in commodities: clothing (Mahutga, 2008) for the
year 2000. Clothing is classified at the two-digit level according
to the Standard International Trade Classification (SITC) Revision 1
scheme (United Nations, 1963) as 84. Our data set is fairly com-
prehensive, as we were able to gather complete information for
94 countries for the year 2000. See Appendix B for details on how
the data was gathered and for a list of included countries and their
abbreviations.

As with the Baker (1992) data, we perform the log trans-
formation on the 2000 clothing trade data. Then we apply
MINRES and MINRES/SVD, which results in PRE(wwT]A) = 0.618
and PRE(udv”jwwT) = 0.348, respectively. The MINRES PRE is
slightly higher than the 0.586 for the Baker (1992) data, while the
additional PRE for the MINRES/SVD is substantially larger than the
0.192 for the Baker (1992) data. The overall PRE of the MINRES/SVD
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Fig. 3. Density matrix for clothing, 2000.

given the mean, PRE(udv” |A) = 0.751, which again is larger than the
0.665 for the Baker (1992) data.

Fig. 3 shows the matrix density plot for the entire 94 coun-
tries in the data set, again ordered by w. The white squares on the
diagonal indicate provisional discrete core countries. The overall
pattern in this matrix reflects a classic continuous core/periphery
structure, with interaction decreasing monotonically as you move
down the continuum. However, there are notable asymmetries in
the export-coreness and import-coreness scores of many countries,
a pattern which is captured and reflected in the differing u and v
scores, respectively, of these countries (see Table 5 below for some
examples).

0.10

0.05

0.05 0.10 0.15 0.20

Fig. 4. Core/periphery plot for clothing, 2000.
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Table 5
Top 15 Countries in 2000 Clothing Trade on Three Coreness Scores.

w (Symmetric) u (Export-Coreness)

v (Import-Coreness)

1 USA 0.220 1 China? 0.225 1 USA 0.232
2 Italy 0.204 2 Italy 0.206 2 Germany 0.206
3 Germany 0.204 3 Hong Kong? 0.197 3 UK 0.205
4 France 0.204 4 France 0.189 4 France 0.198
5 UK 0.203 5 USA 0.189 5 Italy 0.183
6 Spain 0.181 6 India? 0.184 6 Netherlands 0.179
7 Hong Kong? 0.178 7 Germany 0.183 7 Spain 0.178
8 Netherlands 0.172 8 UK 0.182 8 Japan 0.176
9 Japan 0.165 9 Thailand?® 0.178 9 Belgium 0.174
10 Belgium 0.165 10 Indonesia? 0.176 10 Canada 0.172
11 China? 0.158 11 South Korea? 0.169 11 Austria 0.159
12 Canada 0.156 12 Malaysia?® 0.167 12 Switzerland 0.158
13 Switzerland 0.153 13 Spain 0.166 13 Sweden 0.153
14 Austria 0.153 14 Turkey? 0.159 14 Denmark 0.148
15 South Korea? 0.151 15 Pakistan? 0.150 15 Norway 0.146

2 Generally considered to be less developed countries in 2000.

Fig. 4 plots the export-coreness (vertical axis) and import-
coreness (horizontal axis) of each country for clothing in 2000.
Many countries do not fall on or relatively near the 45 degree line
from bottom left to top right, which would be indicative of relatively
similar import- and export-coreness. Instead, there are differences
in the import-coreness and export-coreness scores for many coun-
tries, and some of these differences are relatively large. Consistent
with our discussion of the organization of the garment industry
above, the US is higher on import-coreness than export-coreness
in the 2000 clothing industry. Indeed, this pattern is not limited to
the US, but also holds for other widely accepted “core” countries,
such as the UK, Germany, France, and Italy.

Table 5 lists the top 15 countries in the clothing industry in
2000 by their symmetric coreness w. The in-coreness v and the out-
coreness u reveal notable differences between the countries in each
list. Nine of the top 15 export-coreness countries are less developed.
On the other hand, the top 15 import-coreness countries are made
up entirely of more developed countries. Only three of the nine
less developed countries among the top 15 on export-coreness also
appear in the symmetric coreness measure in 2000, which is consis-
tent with our expectation that a country’s import-coreness score is
much more important than its export-coreness score in terms of its
relative symmetric coreness in the garment industry. China’s place-
ment is perhaps further indicative of the historical organizational
changes in the garment industry. It is widely accepted that China
was a major recipient of offshored garment manufacturing by 2000
and therefore a leading manufacturing exporter, and this idea is
supported by its top ranking in out-coreness and comparatively low
ranking on in-coreness. We emphasize again that these substan-
tively important findings would have been obscured by analyses
that employed symmetric models.

A final step in examining the fit of a model is to display its
residuals. Although as proposed MINRES/SVD is the optimal one-
dimensional solution, a review of the residuals for the clothing
trade data in 2000 in Fig. 5 suggests the presence of higher dimen-
sional patterns. For example, the top five core countries trade less
with each other (as indicated by the blue tint) that is predicted
under our model. Yet given the context of this dataset, this is
precisely what one might intuitively expect. For example, not sur-
prisingly, the residuals implicate geographical and political biases.

3.3. Two independent permutation tests

In order to assess the statistical significance of the PREs with-
outassuming any particular underlying probability distribution, we
turn to permutations tests (Good, 1999). As an illustration of a per-
mutation test, suppose we want to test the association for bivariate

data consisting of two vectors x and y, both of length n. Sup-
pose further that we want to use the Pitman correlation statistic:
S=S(x,y)= zx,-y,-, which is really just the inner (or dot) product.
A permutation test for the significance of this Pittman association
is to choose a large sample (say N=1000) of permutations P of the
set {1, ..., n}. Then for each 7 in P compute the corresponding
Pitman correlation with one of the vectors, say y, permuted by 7:
Sz =Sz(x,y) = Zx,-yn(i). The p-value is then reported as the frac-
tion of permuted correlations greater than or equal to the original
observed result. That is, p = |[{7|Sz > S}|/N.

Note that in applying a permutation test for a given MINRES or
MINRES/SVD, we have to permute the entries in the matrix and then
re-optimize the PRE measure. This makes our tests more difficult
than merely recalculating the sums of squares as in the Pitman
correlation considered above.

The permutations should be chosen so as to “preserve” or “con-
trol for” as much of the structure as possible. For example, if in
the example of the Pitman correlation the sample was divided into
males and females, then one should only choose permutations 7
that preserve sex, meaning that person (i) should be of the same
sex as person i.

(=]
=]
=
=1
[
o
®
=
=]
=

20

20

405

60 - 60

80 L R <0
1T R e s s e L
W F 5
el B
" : SEINTEIET OCE e
1 20 40 60 80 94

Fig. 5. Residual matrix for clothing, 2000.
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Table 6
Three examples of matrix permutations: a matrix isomorphism, MINRES, and SVD.
— A B C D — | a E F G
a — E F G Isomorphism A — B C D
b e — H I 1 & 2 e b — H I
c f h — ] f c h — 7
d g i i — g d i j —
1,2 2,1 N\, SVD
5 ! « ¢ 12 o 21
~
w35 53 N
—/1I B C D |—J§@§ B C D
i — E F G A — E F G
b — H | A b e — H I
c h — ] c f h — I
d g | a — d g i j —

In a permutation test for our two PRE statistics on an n by n
matrix A, the set being permuted is the set I of n(n—1) distinct
ordered pairs that specify the off-diagonal elements of A. What is
to be preserved in a permutation test for a MINRES vector w and its
PRE measure, PRE(ww |A)? At least two natural properties come to
mind: the transpose pairs and the order determined by w. A per-
mutation on I preserves transpose pairs means that the permutation
commutes with the transpose. That s, 7(ij) = (p,q) < 7(j,i)=(q,p) for
all (i,j) in I. Next, this permutation is order preserving (with respect
to the order determined by w) if (i, j) = (p, q) and w; > w; implies
wp > wy for all (i, j) in I. We call a permutation that preserves both
transpose pairs and order, a MINRES permutation, which is illus-
trated by the lower-left permutation in Table 6, with the starting
configuration in the upper left. The set of all MINRES permutations
is closed under composition so that it forms a finite group with
(n(n—1)/2)! elements.

Of course some permutations make no difference at all to the
structure of the matrix. An isomorphism of the matrix A is deter-
mined by a permutation ¢ on the set of row (and column) indices,
{1, ..., n} by the rule that each (i, j) is mapped onto (¢i, ¢j). Such a
permutation is illustrated by the upper right matrix in Table 6. The
set of all matrix isomorphisms also form a finite group of order n!,
with no permutation in common with the MINRES group except
for the identity permutation. Both these disjoint groups are sub-
groups of the set of all (n(n—1))! permutations on I. Despite the
fact that isomorphic matrices are for most purposes the same, we
will use the convention that when presenting matrices, we choose
the isomorphism ¢ that puts the rows and columns in descending
w-order.

In a permutation test for our PRE statistic for the MINES-SVD
model, PRE(udv” jwwT), we want a group that is disjoint from both
the isomorphism and the MINRES groups. While we still want to
preserve unordered pairs, we want to be able to investigate the
effect of asymmetry by considering only those permutations that
fix these unordered pairs. That is, MINRES/SVD permutations are of
the form, 7z(ij) = (i) or (j,i). There are exactly 2""~1)/2 sych permu-
tations. See the lower right matrix in Table 6 for an example.

Table 7 gives the results of the permutation tests for the Baker
(1992) journal citations and for the 2000 clothing trade data. The
first row, labeled “Baker92 MINRES,” gives the permutation test
results for PRE(wwT |A) of the w vector compared to the raw matrix
minus the global mean. These permutations are of the MINRES type,
which permute reciprocal pairs while keeping the orientation with
respect to the main diagonal (e.g., lower-left in Table 6). The first

column gives the observed (unpermuted) PRE of 0.586, meaning
that about 59% of the variance is accounted for by the symmetric
MINRES model, ww!. The next column has the fraction, 0/1000,
of times out of 1000 permutation that the PRE of the permuted
matrices is greater than or equal to PREy. The empirical distribution
of permuted PREs is then fitted to a Pearson type III distribution,
giving a p-value of 9.8 x 10~13. The final two columns give the z-
score and coefficient of skewness: 13.89 and 0.58, respectively. The
extreme values for both the p-value and the z-score should not be
taken too literally, but they do aptly describe the low values and
the low spread of the PREs of the permuted matrices compared to
the initial PREg. While the skewness is relatively low, its effect is
taken account of in the p-value derived from the Pearson type III
distribution.

The second row in Table 7, labeled “Baker92 MINRES/SVD,” gives
the permutation test results for the PRE of the udv! model compared
to the PRE of the raw matrix minus the ww! matrix, PRE(udvT jwwT).
That is, PRE of 0.192 gives the additional variance accounted for
by MINRES/SVD over and above the 0.586 accounted for by MIN-
RES alone. These permutations are of the MINRES/SVD type, which
permute within reciprocal pairs, randomly changing their orienta-
tions with respect to the main diagonal (e.g., lower right in Table 6).
Again, we find that O of 1000 PREs are greater than or equal to
the observed PRE. However, the p-value and the z-score, 2.7 x 10~4
and 4.45, respectively, are less extreme than those for the MINRES
PRE(wwT |A). If we had computed a million PREs, then we would
have expected to find 270 PREs that exceeded PREy = 0.192.

The last two rows of Table 7 are for the 2000 clothing trade
data. Here the MINRES PREj is only slightly higher than for the
Baker (1992)data (0.618 vs.0.586), while its p-value and the z-score
are astronomically higher (2.1 x 10443 and 236.24). However, the
larger sample size could explain these differences. Finally, note that
in the last row the MINRES/SVD PRE of 0.348 being almost double
than for the corresponding PRE, for the Baker (1992) data indicates
a greater asymmetry for the trade data.

Table 7
Baker and clothing permutation tests with Pearson III p-values.
PRE, n > PRE, pm-Value z-Score g1
Baker92 MINRES 0.586 0/1000 9.8x 10713 13.89 0.58
Baker92 MINRES/SVD 0.192 0/1000 2.7x104 4.45 0.53
Cloth00 MINRES 0.618 0/1000 2.1x 107443 236.24 0.43
Cloth00 MINES-SVD 0.348 0/1000 5.7 x 107228 128.17 0.44
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For both sets of data, the large and significant PRE(ww|A) sug-
gests that the core/periphery model was appropriate to apply to
these data. The large and significant PRE(udv” jwwT ) indicates that
the MINRES/SVD model accounted for important empirical asym-
metries in the data.

4. Conclusion and discussion
4.1. Implications for networks and global commodity trade

The journal citation data (Baker, 1992) demonstrate the useful-
ness of asymmetries in relational settings. In addition, a detailed
analysis of some of the in- and out-coreness scores revealed
the importance of second-order effects that are captured by the
one-dimensional singular vectors of the MINRES/SVD model, as
illustrated by the poor PRE (0.029) for the row and column
marginals (Table 4). We suspect that both of these effects, asymme-
try and higher-order interactions, are likely to be present in many
other empirical relational contexts.

Our results on trade data also point to the theoretical and sub-
stantive ground gained by modeling asymmetry, where the out-
and in-coreness is interpreted as export- and import-coreness,
respectively. These two measures can be further compared with
the MINRES-based symmetric coreness, yielding additional infor-
mation. The discussion of the variation between import-coreness
and export-coreness highlights the theoretical importance of mod-
eling asymmetry where present, which carries over to a multitude
of theoretical and empirical settings (Smith and Nemeth, 1988).

4.2. Refinements and generalizations

As mentioned in Section 2.3, SVD is so intrinsically multidi-
mensional that the generalization of the continuous core/periphery
model to more than one dimension is obvious. We conjecture that,
due to the orthogonality of successive singular vectors of the SVD,
that the core/periphery structure may well be replicated at many of
the higher dimensions. For example, in the second dimension, one
might find that the first core is itself split into a core/periphery
structure, resulting in a “super-core” and a “semi-core.” Simi-
larly, the first periphery might split into a “semi-periphery” and
an “extreme-periphery.” The third dimension might display more
localized core/periphery groupings, such as the Central American
countries as a core with respect to relatively more peripheral,
poorer nations to the south.

Another extension of the core/periphery concept is suggested by
“multiple correspondence analysis” (Clausen and Sten-Erik, 1988;
Greenarce and Blasius, 2006), which analyses 3-way or higher
tables by means of “supplementary points,” “stacking,” “joint corre-
spondence analysis,” and other techniques. For example, multiple
data sets on world trade (e.g., multiple commodities or years)
could be represented by a single set of points in k-dimensional
space, where each country is a single point. After some manipu-
lations, some of which are optional, each of these datasets could
be combined into a single matrix that is then subjected to an
SVD.

It should be noted that neither Borgatti and Everett’s (1999)
symmetric continuous model nor our MINRES/SVD is a true gen-
eralization of the discrete core/periphery model in the following
sense: there are matrices A that are perfectly fit by the discrete
core/peripheral model, but which are not a perfect fit to either
continuous model. For example, if all the *s in Table 1 were to be
replaced by any constant, say 1 s, then the correlation between the
diagonal blocks and the same diagonal blocks of Table 1 would be a
perfect 1.0. On the other hand, MINRES produces the optimal vec-
tor w, whose first five entries are 1.092, followed by five entries

of 0.693, resulting in an imperfect PRE of 0.466. Because this data
is symmetric, MINRES/SVD produces the same answer, and there-
fore can explain no additional variance. That is, PRE(udv” jwwT) = 0.
The problem is that although there are only two values for the w;,
“large” and “small,” there are three possible values in the structure
matrix ww!, “large” squared, “small” squared, and “large” times
“small.” The latter, intermediate value is the predicted value of the
*s, instead of being indeterminate as in the discrete model.

One way to construct such a true generalization of the dis-
crete core/periphery model would be to modify the least squares
goodness of fit function in the style of Levine (2005). It might be rea-
sonable to multiply each squared residual term, (u;dv; —A,-j)z, by a
weighting function f of the squared difference, (u; — vj)z, that gives
less weight to those terms where u; is very different from v;. For
example, we could choose f(x) =exp[—x2/(2 s%)]. The interpretation
of this effect would be that for s less than 1, the nearly “off-diagonal”
entries in the matrix would be almost “ignored” as in the discrete
core/periphery model of Table 1. On the other hand, if s were large,
we would get almost equal weight for each term, converging to the
original MINRES/SVD. Finally, s itself could be estimated from the
data.

The most immediate and important impact of this paper would
be for MINRES/SVD to be applied to other data. It is perhaps intu-
itively obvious to us that most social relations, whether between
individuals, countries, or units in between, are not inherently or
generally symmetric. If John likes Mary just as much as Mary likes
John, itis not only boring, but it may also be due to a lack of precision
in the measurements. Even if the measurements are intrinsically
symmetric, such as the amount of time spent together for individ-
uals, or the corporate interlock (Haunschild and Beckman, 1998)
(number of board members in common) for businesses, asymme-
try can result in two ways. First, if the interaction matrix were
to undergo preprocessing, as in correspondence analysis (divid-
ing each entry by the square root of the product of the row and
columns sums), asymmetry can emerge if the marginals differ. Sec-
ondly, even a symmetric matrix can have different singular vectors
after the first dimension. In both situations, it is important to not
exclude the possibility of asymmetry by an unfortunate choice of
method.

Given current software and hardware limitations, however,
many researchers would find it difficult to apply our MINRES/SVD
model to their data. While users of Mathematica could use our
code on their machines, and larger datasets could be analyzed pro-
vided that sufficient memory and computational power were also
available, we would like for this approach to be more widely dis-
tributable and accessible. As a final section in this paper, we propose
a solution to this dilemma by suggesting an approximation that
may be appropriate for such large datasets.

4.3. A MINRES/SVD approximation: SVD with imputed diagonals

As noted in Section 2.3, the SVD procedure, though very
desirable both theoretically for its proven optimal minimization
properties and practically for its computational speed, stability, and
availability, cannot directly resolve the missing diagonal problem.
If this problem can be solved, then much larger data sets can be
analyzed. One approach to this problem is the seemingly ad hoc
approach of imputing values to the missing entries and then carry-
ing out the SVD on the result. Imputing missing values has a long
history (Watson, 1956) and is widely practiced in log-linear analy-
sis with the “quasi-independence” model (Agresti, 2002: 426). Our
idea is to impute diagonal values such that they have little or no
influence on the final result. Obviously, putting Os on the diago-
nal would be wrong since this value is an outlier and would have a
great influence on the final result. After we impute the diagonal val-
ues and compute the SVD on the resulting matrix, we will use the
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results from MINRES/SVD as a benchmark to test the imputation.
Note also that imputing diagonal values is consistent with our pre-
vious arguments against including empirical proxies for reflexive
ties.

Before we proceed to the case of n missing diagonal values, let
us begin by considering a single missing value. Greenacre (1984)
suggests that a single missing value for the (i, j)th entry in a data
matrix A be imputed by the formula obtained by assuming inde-
pendence. If we let ¢;, 13, and s be the column, row, and total sums,
respectively, where these sums do not include the unknown entry
Ajj, then the equation for independence, adjusting for the absence
of Ajj is (r; + A )(cj + Ajj) = Ajj(s + Ajj). The solution for this equation for
Ajj is shown in the following equation:

r,—cj

j=— 15
Y s—ri—q (15)

If all of the diagonal elements were missing, as in most network
data, one could use this formula to estimate each of the diagonal
elements, Ay,. However, this neglects the contribution of the other
n— 1 diagonal elements to the total sum s. So a better approxima-
tion would be to estimate the sum of all the matrix elements by
adding to s an estimate for the other n — 1 diagonal elements, the
average value of the off-diagonal elements, s/(n(n — 1)). After can-
celling the factor n — 1, the independence model for estimating the
diagonal elements appears in the following equation:

(T + A )(Cre + Arie) = Awk(s +5/n). (16)
Solving Eq. (16) gives us the following equation:
1€
Ak o (17)

Tsts/n—rp—c

These imputed diagonals can be computed in both Mathemat-
ica and the free statistical program R by the very same expression,
(r*c)/(s+s/n—r—c), using combined scalar and vector operations.
For example, if we take the formula for generating the mock data
of Fig. 1, then Eq. (17) reduces the root mean square error for esti-
mating the diagonal by a factor of four over the estimate from Eq.
(16). More refinements are possible, of course, but we suggest that
Eq. (17) be used for imputing the diagonal values prior to an SVD.

4.4. Comparisons between SVD with imputed diagonals and
MINRES/SVD

If we impute the diagonal according to Eq. (17), and then look at
the first dimension of an SVD on the data of Fig. 1, then we get a PRE
0f 0.99972, which is very close to the 1.0 we get from MINRES/SVD.
If, however, we use the naive estimation from Eq. (16), the PRE is
0.99514, which is not quite as good. However, the PRE from setting
the diagonals to 0 is 0.87898, indicating a more significant loss of
information. For larger n, the choice of what to put on the diago-
nal has less effect, since the proportion of diagonal entries to total
entriesis 1/n. For example, for n=100, and a formula similar to Fig. 1
(the exponents divided by 10), the SVD with diagonals estimated by
either Eq. (15) or (17) gives a PRE of 1.0 to within machine epsilon.
Even with zeros on the diagonal, the PRE is an acceptable 0.99983.
We conclude that, for large n, imputing diagonals according to Eq.
(17) followed by an SVD will produce fast results with acceptable
accuracy.?

Another advantage, for large matrices, of imputing diagonal val-
ues followed by SVD is that anyone can compute the imputation of
the diagonals found in Eq. (17), even within a standard spreadsheet
application. Similarly, SVD is implemented in most statistical and

2 For example, a laptop with 2 GB of RAM operating at 2 GHz can do an SVD on a
2000 by 2000 matrix in 54s.

linear algebra packages. Finally, SVD has a natural generalization to
more than one dimension. The same is true of MINRES/SVD, except
that the new singular vectors are not in general orthogonal to the
old ones, as they are in SVD.
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Appendix A. Suggestions for initial in- and out-coreness, 1
and v, in the MINRES/SVD computations

In the discussion of Eq. (12), which computes MINRES/SVD using
Mathematica’s FindRoot function, the choice of the initial vectors,
ug and vy, was left for this appendix to specify. The choice of ini-
tial values is important in many numerical problems, since a poor
choice can lead to a spurious result, such as returning the second
eigenvector instead of the first. While this is unlikely in this case,
as long as the initial vectors are positive, there is a concern that
poor choices might increase the computation time. On the other
hand, total computational time can be wasted if one spends too
much time on estimating the initial vectors. Our experience is that
the steps outlined below are a good compromise between simple
computations and a good initial estimate.

Our strategy is to impute diagonals to the n by n data matrix
A using Eq. (17), and then to use the first step in the “reciprocal
averaging” method (Greenacre, 1984) for computing the SVD. This
is justified by Section 4.3, which showed that MINES/SVD can be
approximated by the imputation of diagonals followed by a one-
dimensional SVD. The reciprocal averaging method is analogous to
the power method for computing eigenvectors. It is not as efficient
as other methods, but it does suggest a good way of estimating
the initial vectors. Here’s how reciprocal averaging works: choose
initial vectors xg and yg to be xg(i)=yo(i)=1, fori=1,...,n. Then the
iterative formulas:

Xe=Ayk1s X =R/ 11Xl (18)
Ve =%k14, Y=/ 11kl

(where ||v|| denotes the Euclidean norm of a vector v) give a
sequence of vectors such that x; and y; converge to the first singu-
lar vectors u and v, respectively. Note that X; and y; are just the row
and column sums (denoted by r and c) of the matrix A, including its
imputed diagonals.

Therefore, x; and y, are just the vectors Ac and rA, normalized. If
d is the first singular value, then a good approximation for udv’, the
optimal rank-one approximation for A, would be x,dy,T. However,
we do not specify the singular value, but absorb it into the vectors
u and v, which are now not normalized. It is better numerically to
have the u and the vabout the same size (measured by their norms),
so our initial vectors, ug and v, could be ~/dx, and v/dy,, if only we
had d. However, a good approximation for d is

rcT

do

Using these initial estimates on the logged Baker (1992) data,
dy is 10.8, compared with the final value from FindRoot of 11.1.
Similarly, the correlation between ug and the final u is 0.9964; and
between vy and v, 0.9989.

Appendix B. Included countries and their ISO codes

Approximately half the data was purchased as an electronic file
from the UN as reported imports by respective countries. However,
many poor countries do not report their data every year. To col-
lect data on missing countries, we simply collected reported export
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data from countries that do report, to those that do not, and lim-
ited our inference to countries that appear in this time period. To
fill in trade between missing countries, we collected data at the
closest available time within 3 years from 2000. We also aggre-
gated imports from the former Yugoslavian and Czechoslovakian
republics to represent these. The included countries, ordered by
their ISO abbreviations, are listed below:

ao: Angola, ar: Argentina, at: Austria, au: Australia, bb: Bar-
bados, be: Belgium, bf: Burkina_Faso, bh: Bahrain, bj: Benin, bn:
Brunei_Darussalam, bo: Bolivia, br: Brazil, ca: Canada, cf: Cen-
tral_African_Republic, cg: Congo, ch: Switzerland, ci: Cote_Divoire,
cl: Chile, cm: Cameroon, cn: China, co: Colombia, cr: CostaRica,
cy: Cyprus, cz: Czechoslovakia, de: Germany, dk: Denmark, dz:
Algeria, ec: Ecuador, eg: Egypt, es: Spain, et: Ethiopia, fi: Fin-
land, fr: France, ga: Gabon, gh: Ghana, gm: Gambia, gr: Greece,
gt: Guatemala, hk: Hong_Kong, hn: Honduras, hu: Hungary, id:
Indonesia, ie: Ireland, il: Israel, in: India, ir: Iran, is: Iceland, it: Italy,
jm: Jamaica, jo: Jordan, jp: Japan, kr: South_Korea, kw: Kuwait, 1k:
Sri_Lanka, ly: Libya, ma: Morocco, mg: Madagascar, ml: Mali, mt:
Malta, mu: Mauritius, mw: Malawi, mx: Mexico, my: Malaysia, ne:
Niger, ng: Nigeria, ni: Nicaragua, nl: Netherlands, no: Norway, nz:
New _Zealand, pa: Panama, pe: Peru, ph: Philippines, pk: Pakistan,
pt: Portugal, py: Paraguay, qa: Qatar, sa: Saudi_Arabia, se: Sweden,
sg: Singapore, sn: Senegal, sv: El_Salvador, td: Chad, tg: Togo, th:
Thailand, tn: Tunisia, tr: Turkey, tt: Trinidad/Tobago, uk: UK, us:
USA, uy: Uruguay, ve: Venezuela, ws: Samoa, yu: Yugoslavia, zm:
Zambia.
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